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WEEK 2

1.1 Introduction to Systems of Linear Equations.

1.2 Gaussian Elimination ( in a separate PPT file).

1.3 Matrices and Matrix Operations ( in a separate PPT file).

1.1 Introduction to Systems of Linear Equations
a linear equation in n variables:

aix; + axx; +azx; + -+ apx, =b

0,,05,03,...,4,, b: real number
a4: leading coefficient
x1: leading variable
Notes:
(1) Linear equations have no products or roots of variables and no variables
involved in trigonometric, exponential, or logarithmic functions.
(2) Variables appear only to the first power.

* Ex 1: (Linear or Nonlinear)

1 i~ .
Linear (a)3x+2y=7 (b)ix+y—n:z=\"‘2 Linear

Linear (€)%, —2x,+10x;+x, =0 (d) (Sing)xl -4x, =€ Lincar

- Exponentia |
Nonlinear (e)@t\z =2 (f 2y=4 Nonlinear

not the first power

Nonlinear (g@+ 2x,-3x,=0 (h 4 Nonlinear
~N

trigonomet ric functions not the first power

* a system of m linear equations in n variables:

ayXx, + a4y, + apx; + o o+ oa,x, = b
AyX, + ayX, + apx, + o o+ ax, = b,
ayx, + apx, + apx; + o+ a,x, = b
a,X, + d,x, + a,x + - + a,x = b,

= Consistent:
A system of linear equations has at least one solution.
= Inconsistent:

A system of linear equations has no solution.



Every system of linear equations has either

(1) X + y 3
x -y = -1

two intersecting lines
2 x + y =3
@ 2x + 2y = 6

two coincident lines
3 X+ y =3
( ) x + y =1

two parallel lines

exactly one solution

mifinte number

no solution

Linear Systems in Three Unknowns (Read)

G499

No solutions No soluticns No solutions No soluticns
(three parallel planes; (two parallel planes; (no common intersection) | | (two ceincident planes
no common i ) | | nocommon ) parallel to the third;

no common intersection)

& ol

One solution Infinitely many solutions | | Infinitely many solutions | | Infinitely many solutions
(il ion is a point) ( isaline) | |(planes are all coincident;| | (two coincident planes;
intersection is a plang) intersection is a line)
A Figure 1.1.2

Homogeneous Systems: is the system where all equations are set = 0. ( b=0)

Theorem 1.2.2 A homogeneous linear system with more unknowns than
equations has infinitely many solutions

Trace of a matrix

DEFINITION 8 If A is a square matrix, then the frace of A, denoted by tr(A), is
defined to be the sum of the entries on the main diagonal of A. The trace of A is
undefined if A is not a square matrix.

P EXAMPLE 11 Trace of a Matrix
The following are examples of matrices and their traces.

—1 2 7 0

ap a2 d; 3 5 _8g 4
A=|ay apn an|, B= sy 7 _3
sz dzz2  diz 4 _2 1 0

tr(A) = ay +dax +ass tr(B)=—-1+5+7+0=11 <
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Transpose of a Matrix AT

DEFINITION 7 If A is any m x n matrix, then the transpose of A, denoted by AT,
is defined to be the n » m matrix that results by interchanging the rows and columns
of A; that is, the first column of A7 is the first row of A, the second column of A7 is
the second row of A, and so forth.

-2 4 “'1}.;_;:2_} @ 1 3 =5

A= 3 7 0|->| 3 ;a:jﬂ@ AT =|=2 7 8

-5 8 6 =50 8 6| 4 0 6
Interchange entries that are

symmetrically positioned
about the main diagonal.

Transpose Matrix Properties

THEOREM 1.4.8 If the sizes of the matrices are such that the stated operations can
be performed, then:

(@ (AH"' =4

) (A+B" =AT +B"

(c) (A-B)" =aA" B

(d) (kA)T = kA"

(¢) (AB)' = BTAT

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order:
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Gaussian Elimination and Gauss-Jordan Elimination

mXxn matrix:
a4 G dg a,
Ay Gy Ay a,
mrIrIows
4y Gy A3 as,
_aml am2 am3 amn_
n columns
Notes:

(1) Every entry a;in a matrix is a number.
(2) A matrix with m rows and n columns is said to be of size mxn.
(3) If m=n, then the matrix is called square of order n.

(4) For a square matrix, the entries a1, 0y, ..., a,, are called the main diagonal
entries.

Elementary row operation:
(1) Interchange two rows.r; : R, <> R,
(2) Multiply a row by a nonzero constant. ' : (k)R, — R,
(3) Add a multiple of a row to another row: 7;" :(k)R,+R; >R,

Ex : (Elementary row operation)

0 134;% 1 2 0 3
-1 2 0 3% 0 134
2 34 1] [ 2 3 4 1]
2 4 6 -2] 0|1 -2 3 -1]]
1 3-3 0/ —~]T 3 3 0
5 -2 1 2 5 -2 12J
(12 -4 3] = [1 2 -4 3}
03 -2 -1 ——~ 10 3 -2 -1
21 5 -2 [[0 -3 13 8]]




Ex : Using elementary row operations to solve a system

: Associated El t
Linear System Aig(e)fnlgrfted Matrix Rgxrﬂvn glpggtion
x — 2y + 32 = 9 [1 -213 9
-x + 3y = -4 (-1 3 0 -4
2x — 5y + 5z = 17 [ 2 -5 17
1 -2 3 9 :
0 13 5 rny (DR +R, >R,
2 -5 5 17
1 -2 3 9
0 1 3 5| 55 (CDRAR R,
0 -1 -1 -1
Associated Elementary
Linear System Augemented Matrix Row Operation
1 -2 3 9]
0 3 rY (DR, + R, > R,
0 0 2 4]
x — 2y + 3z =9 1 -239 &g
% (=R, >R
y o+ 3y = 0 1 3 5 37 2) 3 3
.- 5 [0 012
X =
— }, —
z =

Row-echelon form:
Reduced row-echelon form:
(1) All row consisting entirely of zeros occur at the bottom of the matrix.
(2) For each row that does not consist entirely of zeros, the first nonzero entry
is 1 (called a leading 1).
(3) For two successive (nonzero) rows, the leading 1 in the higher row is farther
to the left than the leading 1 in the lower row.
(4) Every column that has a leading 1 has zeros in every position above and
below its leading 1.




Ex : (Row-echelon form or reduced row-echelon form)
12 -1 4:‘ (row -echelon 0 110 5 (reduced row -

0 110 3 echelon form)

0 0 1|-2| form)

(row -echelon (reduced row -

echelon form)

s = W

form)

<

lo oo -
|
o O© O
= O =2
|
S = ) —
|
J

Gaussian elimination:
The procedure for reducing a matrix to a row-echelon form.

Gauss-Jordan elimination:
The procedure for reducing a matrix to a reduced row-echelon form.

Notes:
(1) Every matrix has an unique reduced row echelon form
(2) A row-echelon form of a given matrix is not unique. (Different sequences of
row operations can produce different row-echelon forms.)

Ex: (Procedure of Gaussian elimination and Gauss-Jordan elimination)

w—Produce leading 1

0—20 8 12 ” (2) 8 -6 4 12 28
2

12

§ -6 4 12 28/ —— [0 0 -2 0 8 12
4 -5 6 -5 4 12 4 -5 6 -5 4

The first nonzero column

leading 1 Produce leading 1
1

O M4 32 6] e [ b2 6 1

0—20 8 12 062\0 g 12

4 -5 6 -5 4 0oL 5

\_ Zeros elements below leading 1

The firstnonzero Submatrix
column



—

leading 1 B -
5 1 4 -3/2 6 14 (-5) 4 -3 2 6 14
r 33
= 00 0 -4 -6 _ 0 1 0 -4 -6
00 ®o -17 -4

i qi]
L Zeros elements below leading 1 Submatrix

Produce leading 1

(=)

(=)
(=]
(=)
(=]

Zeros elsewhere

1 Vv - i
G - - [l 4 -3 2 0 2
IR R 2[76]| 14 7
00 1 0|=4]-6 00 10 -4 -6
00 0 0 2 00 00 2]
leading 1
(row -echelon form) (row -echelon form)
75(24) 14 -3 2 0 2 3) 140 2 0 8
.0 0 1 0 0 2 21 00100 2
oo 0012 0000 12
(row -echelon form) (reduced row - echelon form)

Ex : Solve a system by Gauss-Jordan elimination method (only one solution)

x — 2y + 3z =9
-x + 3y = -4
2x - 5y 4+ 5z = 17
Sol:
augmented matrix
(1 -23 9] 0 ,»fl -2 3 9 r) (1 -2 39
-1 30 4| 228 Jyp 1 3 s|——=|0 135
| 2 =55 17 0 -1 -1 -1 02 4
Q- @ () (9
7 1 -2 3 9|n .r, .1y (100 1 X = 1
—10 135 ———=0 10 -1|—— ¥ - -1
0 012 001 2 -
(row - echelon form) (reduced row - echelon form)

Ex :Solve a system by Gauss-Jordan elimination method (infinitely many

solutions)

2x,+ 4x—- 2x;= 0
3x, + Sx, =1

Sol: augmented matrix

G (3
[2 4 -2 o] n s e [1 0 5 2] (reciuced. row -

35 01 01 -3 -1

echelon form)

the corresponding system of equations is
X, +  Sx;= 2

x, —3x,= -1
leading variable :x,, x,

free variable : x,



x, = —1+ 3x,

Let x,=¢
x, =2-5t,
x, =—1+3t, teR
X, =1,

So this system has mfinitely many solutions.

Matrices and Matrix Operations

Definition 1 A matrix is a rectangular array of numbers. The numbers in the array
are called the entries of the matrix.

The size of a matrix M is written in terms of the number of its rows x the number
of its columns. A 2x3 matrix has 2 rows and 3 columns

Arithmetic of Matrices

A + B: add the corresponding entries of A and B

A —B: subtract the corresponding entries of B from those of A
Matrices A and B must be of the same size to be added or subtracted
cA (scalar multiplication): multiply each entry of A by the constant c

Multiplication of Matrices

DEFINITION 5 If A isan m x r matrix and B is an r x n matrix, then the product
AB is the m x n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,
and then add up the resulting products.




A B AB
m X r r X n= m X n
| Inside

Outside

EXAMPLE 5 Multiplying Matrices <

Consider the matrices

W W oA

Since 4 is a 2 % 3 matrix and B is a 3 x 4 matrix, the product 4B is a 2 »« 4 matrix. To determine, for
example, the entry in row 2 and column 3 of 4B, we single out row 2 from 4 and column 3 from B.
Then, as illustrated below, we multiply corresponding entries together and add up these products.

124‘; };?_DD od
[260] R (00 g O

2 752
(2-4)+ (6-3) + (0-5) =26

The entry in row | and column 4 of 4B is computed as follows:

60 gogd d
1-3)+@2-1)+@4-2)=13
The computations for the remaining entries are

(14) + (20) + (42) =12

(I)-C1H+@7NH=27

(1.4) + (2.3) + (45) =30 AB— [12 27 30 13]

(24) + (6.0) + (0.2) =8 8 -4 26 12
RD=(61)+(07) = -4

(23)+(6.1) +(0.2) =12

[;24]3_}§?=[DDD]
2 752
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WEEK 3
2.1 Determinants by Cofactor Expansion

DEFINITION 1

If A is a square matrix, then the minor of entry aij is denoted by Mij and is defined
to be the determinant of the submatrix that remains after the ith row and jth
column are deleted from A. The number (—1)" M/ is denoted by Cij and is called
the cofactor of entry aij. .

EXAMPLE 1 Finding Minors and Cofactors

Let
31 -4
A=|2 5 6
14 8
The minor of entry a1 is
5 6
My = 5 6 =y & =16
4 8
The cofactor of @11 is
1+1
Cry= (=1 My = My =16
Similarly, the minor of entry @37 is
k -4 5 N
Mz = |2 6 ::1 6:__(]

The cofactor of @37 is
3+2
Cp=(—17"T M= —My=—26

DEFINITION 2 If A is an n x n matrix, then the number obtained by multiplying
the entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That is,
det(A) = ay;Cyj + a2;Caj + - - - + anjCpj (5
|cofactor expansion along the jth column]|

and
det(A) = ai1Ci1 + ai2Ci2 + -+ - + @inCin (6)

[cofactor expansion along the ith row]|
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Determinant of 2 x 2 Matrix

The quantity g4 — ¢ in Theorem 1.4.5 is
called the determinant of the 2 « 2 matrix 4

and is denoted by
det(A) =ad — &c

or alternatively by
j j =ad — be

P EXAMPLE 3 Cofactor Expansion Along the First Row
Find the determinant of the matrix

31 0
A=|-2 -4 3
5 4 =2

by cofactor expansion along the first row.

Solution
3 1 0
-4 3 -2 3 -2 -4
det(A) = |2 —4 3=3‘ _‘_1‘ _‘+0‘ )
s 4 - 4 -2 5 =2 5 4

=3(=4) - ()(=1)+0=-1

> EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate det(A) by cofactor expansion along the
first column of A.

Solution
310
R e R N P Y.
5 4 =2 % 14 =21 -4 3

=3(-4) - (=2(=2)+50) = -1
This agrees with the result obtained in Example 3.

A technique for determinants of 2x2 and 3x3 matrices enly
P EXAMPLE 7 A Technique for Evaluating 2 x 2 and 3 x 3 Determinants

3 1] 1
2 |- >§£l = (3)(=2)— ()@ =—10
s h

N2 UK A
-4 5 6|= 4) ?M/ST

= [45 + 84 + 96] — [105 — 48 — 72] =240 <«
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2.2 Evaluating Determinants by Row Reduction

THEOREM 2.2.1

Let A be a square matrix. If A has a row of zeros or a column of zeros, then det(d) = 0.

THEOREM 2.2.2

Let A be a square mairix. Then det(A) = det(.47).

THEOREM 2.2.3

Let A be an y y » matrix.

(a) 1f B is the matrix that results when a single row or single column of 4 is multiplied by a scalar &, then

det(B) = k det(A).

(b) 1f B is the matrix that results when two rows or two columns of A are interchanged, then det(F) = — det{A).

(c) 1f B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of
one column is added to another column, then det(5) = det(4).

Table 1
Relationship Operation
kay, kap, kas dyy dyy dp The first row of A is
dy Ay Ay | =k|ay ap ay multiplied by .
dy Uy an ty Uy Ay

det(B) = kdet(4)

dy dy
I
az Ay

dyy dyy dyy dyy
diz |=—|dy dyp dy
s a3y gy (y

det(B) = —det(A)

The first and second rows
of A are interchanged,

L5
3

a, +kay, a,+ka, a,+ka, |

an
dy

iy =

(3 3y dy

det(B) = det(A)

ay dy dyy
dy dp 4y

A multiple of the second
row of A is added to the
first row.
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EXAMPLE 3 Using Row Reduction to Evaluate a Determinant <

Evaluate det(4) where

0 15 3 =69 The first and second rows of
det{d) =3 —& 9|=—[0 1 ; o
2 & 1 5 &1 Awhere interchanged .
1 =9 3 A common factor of 3 from
= =3[0 ] 5 the first row was taken
2 5 1 through the determinant sign .
- é _? g —2 times the first row was
0 10 —5 added to the third row.
e é _f ﬁ —10 times the second row
a 0 0 —55 was added to the third row .
1 =2 3 A common factor of —55
=(=3)(=550 1 5 « from the last row was taken
0 01 through the determinant sign .

= (=3)(=55)(1) = 165
EXAMPLE 1 det(A + B) # det(A) + det(B) <

1 2 31 4 3

s FHE HH WS FH

We have det(4) = 1, det(5) = 8, and det{ 4 + B) = 23; thus
det( A+ By # det(4) -+ det(B)

Consider

THEOREM 2.3.5

If A is invertible, then

1
det(A)

det(A™1y =

THEOREM 2.3.4

If A and B are square matrices of the same size, then
det(AB) = det(A)det(B)
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EXAMPLE 4 Verifying That det(AB) = det(A), det(B) <

31 -1 3 2 17
‘g_[z 1]’ B_{ 5 81|’ ‘4‘9_{3 14}
We leave it for you to verify that

det(A) =1, det(B)= —23, and det(A48)= —23
Thus det(A8) = det(A)det(F), as guaranteed by Theorem 2.3.4.

Consider the matrices

2.3 Properties of Determinants; Cramer’s Rule

THEOREM 2.3.7 Cramer's Rule
If Ax = b is a system of n linear equations in n unknowns such that det(A) # 0. then
the system has a unique solution. This solution is
det(A,) det(Ay) det(A,)
=W. x2=m,.... x,,=m

where Aj is the matrix obtained by replacing the entries in the jth column of A by
the entries in the matrix

X

P EXAMPLE 8 Using Cramer's Rule to Solve a Linear System

Use Cramer’s rule to solve
n+  +2uy=6
=3x; +4x; 4 6x3 =30
X - +3n=8
Solution _ _ _
1 0 2 6 0 2
A=|-3 4 6|, A =30 4 6]
-1 -2 3] [ 8 -2 3
[1 6 2] (1 0 6
Ay=1[-3 30 6|, Ay=[-3 4 30
-1 8 3] -1 -2 8
Therefore,
det(A;)) -40 -10 det(Ay) 72 18
"TRtA) @1 T ) @0
det(Ay) 152 38
p=——=—=— 4
det(A) 44 11
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WEEK 4

1.4 Inverses; Algebraic Properties of Matrices.

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid.

(@) A+B=B+A (Commutative law for addition)
(b)) A+(B+C)=(A+ B)+C (Assoclative law for addition)

(¢) A(BC)=(AB)C (Assoclative law for multiplication)
(d) A(B+C)=AB+ AC (Left distributive law)

() (B+C)A=BA+CA (Right distributive law)

(f) A(B—C)=AB— AC
(g) (B—C)A=BA—-CA
(h) a(B+C)=aB+aC

(i) a(B—C)=aB—-aC
(j) (@a+b)C=aC+bC

(k) (a—b)C =aC—-bC

() a(bC) = (ab)C

(m) a(BC)=(aB)C = B(aC)

Zero Matrices

(0]

Lo T T T

THEOREM 1.4.2 Properties of Zero Matrices

If ¢ is a scalar, and if the sizes of the matrices are such that the operations can be perfomed, then:
(@) £+0=0+A4=4

() A—0=4

(c) £A—A=4+ (-4 =0

(d) 0A=10

fe) f A= (,thens =0 or 4= 0.
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The identity matrix

A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

1 0 I 00
[1], 0 11’ 01 0],
0 01

o O O -
o o = o
o = O O
L= =R =]

Inverse Matrices

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be
found such that AB = BA = I, then A is said to be invertible (or nonsingular) and
B is called an inverse of A. If no such matrix B can be found, then A is said to be
singular.

AA™' =1 and A 'A=1

The Inverse of a 2x2 matrix

THEOREM 1.4.5 The matrix

=[]

is invertible if and only if ad — be # 0, in which case the inverse is given by the

Sformula
1 d —b
-1 _
A= ad — bc [—c a] @)

The Determinant

The quantity g+ — be in Theorem 1.4.5 is
called the determinant of the 2 .. > matrix 4

and is denoted by

det(d) = ad — be
or alternatively by

j j =ad — be
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More on Invertible Matrices

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is

invertible and
(ABy '=pB'a"!

THEOREM 1.4.7 If A is invertible and n is a nonnegative integer, then:
(a) A~'isinvertible and (A=")~' = A.

(b) A" is invertible and (A")~' = A™" = (A~)".

(c) kA is invertible for any nonzero scalar k, and (kA)~™" = k~'A~".

Transpose Matrix Properties

THEOREM 1.4.8 Ifthe sizes of the matrices are such that the stated operations can
be performed, then:

(@ (AN =A

by (A+B)7" =AT+ BT
(c) (A-BT" =A"-B"
(d) (kA)T = kAT

(e) (AB)" = B"AT

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and

1.5 Elementary Matrices and methods for finding A-1

Using Row Operations to find A-1

Begin with:

Use successive row operations to produce:
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12310 0]
2573 n1o0
108 00 1]
1 2 3 10 0] We added =2 times the first
0 1 =3 =210 row to the second and —1 times
0 =2 5 -1 0 l_ the first row to the third.
(1] :: _? _; ? E . Weadded Z times the
00 —1 5 5 second row to the third
L‘) f g é (1] g We rmultiplied the third
00 1| 521 Wbl
120 —-14 & 3 We added 3 tnes the third
010 13 =5 =-3| - row to the second and —3 times
001 5 -2 —I_ the third row to the first.
é ? g _‘:g _lg _g ) We added =2 times the
00 1 5 3 _1 second row to the first.
1 0 0] —40 16 97
0 1 0 13 -5 -3
0 0 1 5 =2 -1
Thus,
—40 16 9]
A"l = 13 -5 -3
5 =2 -1

Not Invertible Matrix
EXAMPLE 5 Showing That a Matrix Is Not Invertible

Consider the matrix
1 6 4
A= 2 4 -1
-1 2

Section 1.6 Linear Systems and Invertible Matrices

THEOREM 1.6.2

If 45 an invertible  » » matrix, then for each 1 matrix b, the system of equations gy = b has exactly one solution,

namely, x — 4"l
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Example

P EXAMPLE 1 Solution of a Linear System Using A1
Consider the system of linear equations

X+ 2x; + 3x; =
ZX[+SXQ+3X3= 3
X + Bx:s =17

In matrix form this system can be written as Ax = b, where

1 2 3 1 5
A=1|2 5 3|, x=|x2|, b=] 3
1 0 8 X 17

In Example 4 of the preceding section, we showed that A is invertible and

—40 16 9
A'=] 13 -5 -3
5 -2 -1

By Theorem 1.6.2, the solution of the system is

—40 16 9 5 1
x=A"b= 13 -5 -3 3Jl=1|-1
5 =2 -1 |17 2

orx;=1Lxn=—-1x=2 <«

Section 1.7 Diagonal, Triangular and Symmetric Matrices
Diagonal

A general n x n diagonal matrix D can be written as

d 0 - 0
0 d --- 0
0 0 - d,
Triangular
ajp ap ap apy ap 0 0 0
0 an an an a an 0 0
0 0 a3 ay ay asp ax 0
0o 0 0 au aiq] a4 as  ass

1 4 x 4 upper Ag 14 x 4 lower
ular matrix
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Symmetric

DEFINITION 1 A square matrix A is said to be symmetric if A = AT,

WEEK 5
Euclidean Vector Spaces

Material in this chapter

3.1 Vectors in 2-Space, 3-Space, and n-Space
3.2 Norm, Dot Product, and Distance in Rn
3.3 Orthogonality

3.4 The Geometry of Linear Systems

3.5 Cross Product

Vectors in Coordinate Systems

Up until now we have discussed vectors without reference to a coordinate system. However, as we will soon
see, computations with vectors are much simpler to perform if a coordinate system is present to work with.

The component forms of the zero vector are
0=1(0,0) in 2-space and 0 = (0, 0, 0) in
3-space.

If a vector y in 2-space or 3-space is positioned with its initial point at the origin of a rectangular coordinate
system, then the vector is completely determined by the coordinates of its terminal point (Figure 3.1.10). We
call these coordinates the components of y relative to the coordinate system. We will write v = (v{,v7) to
denote a vector y in 2-space with components (vy, v7), and v = (vy, v3, v) to denote a vector y in 3-space
with components (v{, v7, v3).

Vectors
Addition of vectors by the parallelogram or triangle rules
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Subtraction:

Scalar Multiplication:

2v (3)v

Properties of Vectors

THEOREM 3.1.1 If u, v, and w are vectors in R", and if k and m are scalars, then:
(@) u+v=v+u

b)) (u+v)+w=u+(v+w

(c) u+0=0+u=u

d) u+(—u)=0

() k(u+v)=ku+kv

(f) (k+m)u=ku+mu

(g) k(mu) = (km)u

(h) lu=u
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Norm, Dot Product, and Distance in Rn

Norm:
DEFINITION 1 If v = (v, vy, ..., v,) is a vector in R”, then the norm of v (also
called the length of v or the magnitude of v) is denoted by ||v||, and is defined by the
formula
VIl = Vo2 + 02 + 02 +--- + 07 3

Unit Vectors:

| ===

vl

The Dot Product
A \\ "
0
0 .
; ——> 45 L > >

The angle 6 between u and v satisfies 0 <0 < 7.

DEFINITION 3 If u and v are nonzero vectors in R* or R, and if 6 is the angle
between u and v, then the dot product (also called the Euclidean inner product) of
uand v is denoted by u - v and is defined as

u-v=ul|v|cosé (12)
Ifu=0orv =0, then we define u . v to be 0.

The sign of the dot product reveals information about the angle & that we can obtain

by rewriting Formula (12) as -

0=
llullfivi

(13)
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DEFINITION 4 Ifu= (u,,u,,...,u,)and v= (v, v5,...,v,) are vectors in R",
then the dot product (also called the Euclidean inner product) of u and v is denoted

by u - v and is defined by

U-v=uv) +uvy+---+u,v, (17)
Properties of the Dot Product
THEOREM 3.2.2 Ifu, v, and w are vectors in R", and if k is a scalar, then:
(@) u-v=v-.u |Symmetry property]
b)) u-(v+w)=u-v+u-.-w |Distributive property]
(AN Liw . v — (L) . v IHIamacanalfv nranarful
(¢) k{u-v)=(ku)-v IHomegenelty property]
(d) v-v=0andv-v=0ifandonlyifv =0 [Positivity property]
THEOREM 3.2.3 Ifu, v, and w are vectors in R", and if k is a scalar, then:
(@ 0.v=v.0=0
(b)) u+v)-w=u-w+v.w
(¢) u-(Vv—w)=u-v—u-w
d) (u=v)-w=u-w—v.w
(e) k(u-v)=u-(kv)
Cauchy-Schwarz Inequality
THEOREM 3.2.4 Cauchy-Schwarz Inequality
Ifu=(uy,uz,...,u,) and v = (vi, v2, ..., v,) are vectors in R", then
[u-v| = [[ulfllv] (22)

or in terms of components

luyvy + a0z + - - + Upv,| < @f 405+ +up)' 27 + 03+ + 0D
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Dot Products and Matrices

Table 1
Form Dot Product Example
| 5
" v=[1 -3 5]|4]|=-7
u a column 5 0
matrixandva | u-v=u'v=v'u ~
column matrix 3 l
v=|4 Viu=[5 4 0][-3|=-7
0 S
B
u=[l =3 5] |u=[l =3 5]|4|=-7
u a row matrix 0
andvacolumn | u-v=uv=vu" [5] -
matrix v=|4 [ 1]
Lo] =[5 4 0]|-3|=-7
5
I vu=[5 4 0]
u a column —
matrixandva | u-v=vu=u’v" 5
row matrix 5
v=[5 4 0] |uV=[1 -3 5|4
0
5
w'=[1 =3 5]|4|=-7
u a row matrix u=[1 =3 3 0
and v a row u-v=uy’ =vu’
matrix V= [5 4 0] 1]
[5 4 0]|-3|=-7
5_

Section 3.3 Orthogonality

is called an orthonormal set.

DEFINITION 1 Two nonzero vectors u and v in R" are said to be orthogonal (or
perpendicular)ifu . v = 0. We will also agree that the zero vector in R" is orthogonal
to every vector in R". A nonempty set of vectors in R" is called an orthogonal set if
all pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors
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Orthogonal Projections

THEOREM 3.3.2 Projection Theorem
Ifuand a are vectors in R", and if a # 0, then u can be expressed in exactly one way
in the form uw = w\ + w2, where w, is a scalar multiple of a and w, is orthogonal

o a.

i'," \ A
N “’2 b “‘2
> ) : 0

‘ ; ]
i ¥ SR <
Y —
i e
[~
3
\%4

=1/

=
=
=z

Point-line and point-plane Distance formulas

THEOREM 3.34
(@) In R? the distance D between the point Po(xo. Yo) and the line ax + by + ¢ = 0

A

VaZ +p?

(b) In R® the distance D between the point Py(xy, Yo, Zo) and the plane
ax+by+cz+d=0is

D

b d
_ laxg + byy + czo + d| (16)

D
N

The Geometry of Linear Systems

THEOREM 3.4.1 Let L be the line in R* or R* that contains the point x, and is
parallel to the nonzero vector v. Then the equation of the line through x, that is

parallel to v is
X=X +1v (M

If xo = 0, then the line passes through the origin and the equation has the form
X=1v (2)

Anoud Alyabah - 5140072205, 2015-2016
Page 26



THEOREM 3.4.2 Let W be the plane in R® that contains the point x, and is parallel

to the noncollinear vectors v, and v,. Then an equation of the plane through x, that
(©)

is parallel to v, and v, is given by
X =Xp + V] + LV2
If xo = 0, then the plane passes through the origin and the equation has the form
(C)

X=10hV| +hV2

X=Xp+ 4V +hVy

X=Xg+Iv
X=OV+hY,

=
=

Y

DEFINITION 1 Ifx, and v are vectors in R”, and if v is nonzero, then the equation
X=X +1Vv (5)

defines the line through x that is parallel to v. In the special case where xo = 0, the

line is said to pass through the origin.

DEFINITION 2 Ifx, v, and v, are vectors in R", and if v, and v, are not collinear,
(6)

then the equation
X=Xo+hHVI+1LV2

defines the plane through x that is parallel to v, and v,. In the special case where

Xg = 0, the plane is said to pass through the origin.
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Cross Product

DEFINITION 1 Ifu = (u), u2, u3) and v = (v;, v2, v3) are vectors in 3-space, then

the cross product u x v is the vector defined by

Uuxyv= (lle; — U3Vy, U3V] — U V3, U V7 — Ur V)

)

or, in determinant notation,

wxv=(

U Uuj uy uj u, u

s s

2
VB U3 vy U3 vy Ly

(h

Cross Products and Dot Products

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product
If u, v, and w are vectors in 3-space, then

(@)
®)
(©)
(d)
(e)

u-(uxv)y=0 (u x v is orthogonal to u)
ve(uxv)=0 (u x v is orthogonal to v)
lux v|I> = [[ul?[|VI* = (u-v)*  (Lagrange’s identity)

ux(vxxw)=(u-w)Vv—(u-v)W (relationship between cross and dot products)
(U xXVv)xXw=(u-+w)Vv—(V.W)u (relationship between cross and dot products)

Properties of Cross Product

THEOREM 3.5.2 Properties of Cross Product

Ifu, v, and w are any vectors in 3-space and k is any scalar, then:
(@) uxv=—(vxu)

(b) ux(v+w)=(uxv)+(uxw)

(¢) (u+v)xw=(uxw)+(vxw)

(d) k(uxv)=(ku) xv=nux (kv)

() ux0=0xu=»0

(f) uxu=0
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Geometry of the Cross Product

lu x v|| = |[ull||v]| sin&

THEOREM 3.5.3 Area of a Parallelogram

If wandv arevectorsin 3-space, then |u x v|| is equal to the area of the parallelogram
determined by u and v.

WEEK 6

Chapter 4 General Vector Spaces
4.1 Real Vector Spaces

4.2 Subspaces

4.3 Linear Independence

4.4 Coordinates and Basis

4.5 Dimension

4.6 Change of Basis

Section 4.1 Vector Space Axioms

DEFINITION 1 Let V beanarbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by scalars. By addition we mean a rule for
associating with each pair of objects u and v in V an object u + v, called the sum of u
and v; by scalar multiplication we mean a rule for associating with each scalar k and
each object u in V an object ku, called the scalar multiple of u by k. If the following
axioms are satisfied by all objects u, v, w in V and all scalars k and m, then we call
V a vector space and we call the objects in V vectors.

If u and v are objects in V, thenu + visin V.
u+v=v+u
u+(v+w)=(u+v)+w

There isanobject 0 in V, called a zero vector for V, suchthat) +u=u+0=u
foralluin V.

Lo

n

For each u in V, there is an object —u in V, called a negative of u, such that
u+(—u)=(—u)+u=0.

6. Ifk is any scalar and u is any object in V, then ku is in V.

7. k(u+v)=ku+kv

3. (k+mju=ku+mu

9. k(mu) = (km)(u)
10, Tu=nu
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Section 4.2 Subspaces

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is
itself a vector space under the addition and scalar multiplication defined on V.

THEOREM 4.2.1 If W is a set of one or more vectors in a vector space V, then W is
a subspace of 'V if and only if the following conditions hold.

(a) Ifuandv arevectorsin W, then u + v is in W.
(b) If k is any scalar and w is any vector in W, then ku is in W.

The ‘smallest’ subspace of a vector space V

DEFINITION 2 If w is a vector in a vector space V, then w is said to be a linear
combination of the vectors v, v, ..., v, in V if w can be expressed in the form

w=kivi+kvi+--+ kv, (2)

where ki, k2, . .., k, are scalars. These scalars are called the coefficients of the linear
combination.

THEOREM 4.2.3 If S = {W, Wy, ..., W,} is a nonempty set of vectors in a vector

space V, then:

(a) The set W of all possible linear combinations of the vectors in S is a subspace
of V.

(b) The set W in part (a) is the “smallest” subspace of V that contains all of the

vectors in S in the sense that any other subspace that contains those vectors
contains W.

The span of S

DEFINITION 3 The subspace of a vector space V that is formed from all possible
linear combinations of the vectors in a nonempty set S is called the span of S, and
we say that the vectors in S span that subspace. If S = {w;, wa, ..., w,}, then we
denote the span of S by

span{wi, wa, ..., w,} or span(S)
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span{v,, v,}

kyvy +kyvy

(a) Span{v} is the line through the (b) Span{v,,v,} is the plane through the
origin determined by v. origin determined by v, and v,.

Section 4.3 Linear Independence

DEFINITION 1 If S = {vy, v, ..., v, } isa nonempty set of vectors in a vector space
V, then the vector equation

klvl +k2\'2 + -+ k,-\'r =0
has at least one solution, namely,
ki=0, ky=0,..., k. =0

We call this the trivial solution. If this is the only solution, then S is said to be a
linearly independent set. 1f there are solutions in addition to the trivial solution, then
S is said to be a linearly dependent set.

Linearly independence

THEOREM 4.3.1 A set S with two or more vectors is

(a) Linearly dependent if and only if at least one of the vectors in S is expressible
as a linear combination of the other vectors in S.

(b) Linearly independent if and only if no vector in S is expressible as a linear
combination of the other vectors in S.
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THEOREM 4.3.2
(a)
(b)

not 0.

(c)

is a scalar multiple of the other:

Linear Independence in R2 and R3

A finite set that contains 0 is linearly dependent.

P

Y=

(a) Linearly dependent

4 Z

(a) Linearly dependent

The Wronskian

(b) Linearly dependent

(b) Linearly dependent

A set with exactly one vector is linearly independent if and only if that vector is

A set with exactly two vectors is linearly independent if and only if neither vector

Y=

(¢) Linearly independent

b4

(¢) Linearly independent

DEFINITION 2 If f; = fi(x),f: = fo(x),

fi(x)
f1l(x)

fH(x)

f(x)
W(x) = .

is called the Wronskian of f, f>, ..., fy.

% £ %

..., 5, = fu(x) are functions that are
n — 1 times differentiable on the interval (—oe, <), then the determinant

Ja(x)
)

£V (x)
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THEOREM 4.3.4 [f the functions 1,12, ..., f, have n — 1 continuous derivatives
on the interval (—=, x), and if the Wronskian of these functions is not identically

zero on (—o, ), then these functions form a linearly independent set of vectors in
C =D (—c0, ).

Section 4.4 Coordinates and Basis

DEFINITION 1 If V is any vector space and S = {vi, V2, ..., V,} is a finite set of
vectors in V, then S is called a basis for V if the following two conditions hold:

(a) S is linearly independent.
(b) S spans V.

THEOREM 4.4.1 Uniqueness of Basis Representation

IfS = {vy,va, ..., V,} is a basis for a vector space V, then every vector v in V can
be expressed in the form v = c\Vy + caVa + - - - + ¢, Vp in exactly one way.

The coordinate vector

DEFINITION 2 If S = {v1, V2, ..., V,} is a basis for a vector space V, and

V=cCV +C2V2 +---4+cpvn
is the expression for a vector v in terms of the basis S, then the scalars ¢y, ¢2, ..., ¢,
are called the coordinates of v relative to the basis S. The vector (¢, ¢, ..., ¢,) in

R" constructed from these coordinates is called the coordinate vector of v relative to
S'; it is denoted by

(V)s = (ClsC29 --'acn) (6)

Section 4.5 Dimension

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.
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Plus / Minus Theorem

THEOREM 4.5.3 Plus/Minus Theorem
Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S U {v} that results by inserting v into S is still linearly
independent.

(b) Ifvis avectorin S that is expressible as a linear combination of other vectors
in S, and if S — {v} denotes the set obtained by removing v from S, then S and
S — {v} span the same space; that is,

span(S) = span(S — {v})

The vector outside the plane Any of the vectors can Either of the collinear
can be adjoined to the other be removed, and the vectors can be removed,
two without affecting their remaining two will still and the remaining two
linear independence. span the plane. will still span the plane.

THEOREM 4.5.4 Let V be an n-dimensional vector space, and let S be a set in V
with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly

independent.

THEOREM4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If'S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.
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THEOREM 4.5.6 If W is a subspace of a finite-dimensional vector space V, then:
(a) W is finite-dimensional.

(b) dim(W) < dim(V).

(¢) W =V ifand only if dim(W) = dim(V).

Section 4.6 Change of Basis

The Change-of-Basis Problem Ifvis a vector in a finite-dimensional vector space V,
and if we change the basis for V from a basis B to a basis B’, how are the coordinate
vectors [v]p and [v]p related?

Solution of the Change-of-Basis Problem If we change the basis for a vector space V
from an old basis B = {uj, u,,...,u,} to a new basis B’ = {uj, uj, ..., u,}, then
for each vector v in V. the old coordinate vector [v]p is related to the new coordinate
vector [v]p by the equation

[Vl = P[v]p (7)
where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors of P are

[ull]B7 [u/2]B$ ceey [u:,]B (8)

Transition Matrices

The columns of the transition matrix from an old basis to a new basis are the coordinate
vectors of the old basis relative to the new basis.

THEOREM 4.6.1 If P is the transition matrix from a basis B’ to a basis B for a finite-
dimensional vector space V, then P is invertible and P~ is the transition matrix from
Bto B

Anoud Alyabah - 5140072205, 2015-2016
Page 35



Computing the transition matrix

WEEK 7

A Procedure for Computing Pp_, p’

Form the matrix [B’ | B].

Step 3. The resulting matrix will be [7 | Pg_ p].
Step 4. Extract the matrix Pp_, p from the right side of the matrix in Step 3.

This procedure is captured in the following diagram.

row operations

[new basis | old basis] = [1 | transition from old to new]

Chapter 4 General Vector Spaces

4.7 Row Space, Column Space, and Null Space

4.8 Rank, Nullity, and the Fundamental Matrix Spaces

4.9 Matrix Transformations from RR™ to R™

4.10 Properties of Matrix Transformations

4.11 Geometry of Matrix Operators on R?

Row Space, Column Space, and Null Space

DEFINITION 1 For an m x n matrix

ar a crr A
A a.ZI a?Z T a.2n
aml  Am2 -+ dmn
the vectors
r=lan an --- ayl
n=lan an - aul
Im = [aml am2 - amn]

in R" that are formed from the rows of A are called the row vectors of A, and the
vectors

an ap A

a an A
¢ = . , &= A P 5

am Am2 Amn

in R™ formed from the columns of A are called the column vectors of A.
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Row, column and null spaces

DEFINITION 2 If A is an m x n matrix, then the subspace of R” spanned by the
row vectors of A is called the row space of A, and the subspace of R™ spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of R”, is called the
null space of A.

Systems of linear equations

Question 1. What relationships exist among the solutions of a linear system Ax = b
and the row space, column space, and null space of the coefficient matrix A?

Question 2. What relationships exist among the row space, column space, and null
space of a matrix?

THEOREM 4.7.1 A system of linear equations AX = b is consistent if and only if b
is in the column space of A.

THEOREM 4.7.2 [f Xg is any solution of a consistent linear system AX = b, and if
S = {V1, V2, ..., V& } is a basis for the null space of A, then every solution of Ax = b
can be expressed in the form

X =Xg-Fc1vi +cova - - v 3)

Conversely, for all choices of scalars ¢y, ¢y, . .., ¢, the vector X in this formula is a
solution of Ax = b.

A basis for span (S)

Problem Given a set of vectors S = {vy, v2, ..., vi} in R", find a subset of these
vectors that forms a basis for span(S), and express those vectors that are not in that
basis as a linear combination of the basis vectors.
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Basis for Span(S)

Step 1.
Step 2.
Step 3.
Step 4.

Form the matrix A having vectorsin S = {vy, v, ..., V;} as column vectors.
Reduce the matrix A to reduced row echelon form R.
Denote the column vectors of R by wyi, wa, ..., Wi.

Identify the columns of R that contain the leading I's. The corresponding

column vectors of A form a basis for span(S).

Step 5.

Obtain a set of dependency equations by expressing each column vector of

R that does not contain a leading | as a linear combination of preceding column
vectors that do contain leading 1’s.

Step 6.
by the corresponding column vectors of A.

This completes the second part of the problem.

Replace the column vectors of R that appear in the dependency equations

Rank and Nullity

DEFINITION 1 The common dimension of the row space and column space of a
matrix A is called the rank of A and is denoted by rank(A): the dimension of the null
space of A is called the nullity of A and is denoted by nullity(A).

THEOREM 4.8.2 Dimension Theorem for Matrices

If A is a matrix with n columns, then

rank(A) + nullity(A) = n

THEOREM 4.8.3 If A is an m X n matrix, then
(a) rank(A) = the number of leading variables in the general solution of Ax = 0.

(b) nullity(A) = the number of parameters in the general solution of Ax = 0.
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THEOREM 4.8.4 Equivalent Statements

If A is an n X n matrix, then the following statements are equivalent.

(a)
(b)
(c)
(d)

(m)

(n)
\ AT/

(0)

A is invertible.

AX = 0 has only the trivial solution.

The reduced row echelon form of A is I,.

A is expressible as a product of elementary matrices.
Ax = b is consistent for every n x 1 matrix b.

AX = b has exactly one solution for every n x | matrix b.
det(A) # 0.

The column vectors of A are linearly independent.
The row vectors of A are linearly independent.

The column vectors of A span R".

The row vectors of A span R".

The column vectors of A form a basis for R".

The row vectors of A form a basis for R".

A has rank n.

A has nullity 0.

Fundamental Spaces of Matrix A

e Row space of A

e Null space of A

e Column space of A
* Null space of A"
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THEOREM 4.8.10 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.

(a)
(b)
(c)

(d)
(e)

()
(2
(h)
(i)

(/)
(k)

()

(m)
(n)
(0)
(p)
(q)

A is invertible.

Ax = 0 has only the trivial solution.

The reduced row echelon form of A is I,.

A is expressible as a product of elementary matrices.

Ax = b is consistent for every n x 1 matrix b.

Ax = b has exactly one solution for every n x 1 matrix b.
det(A) # 0.

The column vectors of A are linearly independent.

The row vectors of A are linearly independent.

The column vectors of A span R".

The row vectors of A span R".

The column vectors of A form a basis for R".

The row vectors of A form a basis for R".

A has rank n.

A has nullity 0.

The orthogonal complement of the null space of A is R".
The orthogonal complement of the row space of A is {0}.

Matrix Transformations from R"to R™

DEFINITION 1 If V and W are vector spaces, and if f is a function with domain V
and codomain W, then we say that f is a transformation from V to W or that f maps
V to W, which we denote by writing

In the special case where V = W, the transformation is also called an operator on V.

VW

THEOREM 4.9.1 For every matrix A the matrix transformation Ta: R" — R™ has the
Jollowing properties for all vectors u and v in R" and for every scalar k:

(a) Tx(0)=0

(b) Ta(ku) = kTs(u) [Homogeneity property]

(¢) Ta(u+v) =Ta(u) +Ta(v) [Additivity property]
(d) Ta(u—v)=Ts(u) — Ta(v)
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Properties of Matrix Transformations

DEFINITION 1 A matrix transformation 74: R" — R™ is said to be one-to-one if Ty
maps distinct vectors (points) in R” into distinct vectors (points) in R™.

THEOREM 4.10.1 If A is an n X n matrix and Ty: R" — R" is the corresponding
matrix operator, then the following statements are equivalent.

(a) A is invertible.
(b) The range of Ty is R".

(¢) Ty is one-to-one.

THEOREM4.10.2 T: R" — R™ is a matrix transformation if and only if the following
relationships hold for all vectors w and v in R" and for every scalar k:

(i) Tw+v)y=T@)+T(V) |Additivity property]
(i) T(ku) = kT (u) [Homogeneity property]

THEOREM 4.10.3 Every linear transformation from R" to R™ is a matrix trans-
Jformation, and conversely, every matrix transformation from R" to R™ is a linear
transformation.
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THEOREM 4.10.4 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(a) A isinvertible.

(b) Ax = 0 has only the trivial solution.

(¢) The reduced row echelon form of A is I,.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n x 1 matrix b.

(f) Ax = Db has exactly one solution for every n x 1 matrix b.

A sl AN _1

( g) acuiAa) += 0.

(h) The column vectors of A are linearly independent.

(i) The row vectors of A are linearly independent.

(j) The column vectors of A span R".

(k) The row vectors of A span R".

(I) The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(n) A has rank n.

(0) A has nullity 0.

(p) The orthogonai compiement of the nuli space of A is R".
(q) The orthogonal complement of the row space of A is {0}.
(r) Therange of Ty is R".

(s) Ty is one-to-one.

WEEK 9

Chapter 5 Eigenvalues and Eigenvectors
5.1 Eigenvalues and Eigenvectors

5.2 Diagonalization

5.3 Complex Vector Spaces

Section 5.1 Eigenvalues and Eigenvectors

DEFINITION 1 If A is an n x n matrix, then a nonzero vector x in R” is called an
eigenvector of A (or of the matrix operator 7,) if Ax is a scalar multiple of x; that is,

AX = AX

for some scalar A. The scalar A is called an eigenvalue of A (or of T4), and x is said
to be an eigenvector corresponding to \.

e .,/ v e

Ax AXx
(@) 0=sA=1 b)) A=<1 (c) -1=A=0 d) A<-1

Anoud Alyabah - 5140072205, 2015-2016
Page 42



The Characteristic Equation

THEOREM 5.1.1 If A is an n x n matrix, then A is an eigenvalue of A if and only if
it satisfies the equation
det(Axl — A) =0 (1)

This is called the characteristic equation of A.

THEOREM 5.1.3 If A is an n x n matrix, the following statements are equivalent.
(a) A is an eigenvalue of A.

(b) The system of equations (,LI — A)x = 0 has nontrivial solutions.

(¢) There is a nonzero vector X such that AXx = Ax.

(d) A is a solution of the characteristic equation det(Al — A) = 0.

EXAMPLE 2 Finding Eigenvalues 4

In Example 1 we observed that ) — 3 is an eigenvalue of the matrix
3 0
A=
but we did not explain how we found it. Use the characteristic equation to find all eigenvalues
of this matrix.

Solution Tt follows from Formula 1 that the eigenvalues of A are the solutions of the equation

det{\J = A4) = 0, which we can write as

A=3 D0
-5 A1

-
from which we obtain
(A=A +1)=0 @

This shows that the eigenvalues of 4 are \ — 2 and \ — — 1. Thus, in addition to the
eigenvalue ) — 3 noted in Example 1, we have discovered a second eigenvalue \ — — 1.
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A=3 0 | |0
—8 A 1|[x2| |0
If A = 3, then this equation becomes
O 0fxt|_ |0
-3 4|[x2] |0

whose general solution is

{verify) or in matrix form,

Thus,

1]
2

1 -
is a basis for the eigenspace corresponding to )\ — 3. We leave it as an exercise for you to
follow the pattern of these computations and show that

i

is a basis for the eigenspace corresponding to A\ = — 1.

THEOREM 5.1.6 Equivalent Statements

If Ais an n x n matrix, then the following statements are equivalent.
(G Aisinvertible.

(b) Ax =0 has only the trivial solution.

(c) The reduced row echelon form of A is I,.

(d) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n x 1 matrix b.

(f) Ax=b has exactly one solution for every n x 1 matrix b.
(g) det(A) #0.

(h)  The column vectors of A are linearly independent.

(i)  The row vectors of A are linearly independent.

(f) The column vectors of A span R".

(k)  The row vectors of A span R".

(I)  The column vectors of A form a basis for R".

(m) The row vectors of A form a basis for R".

(n) A has rank n.

(0) A has nullity 0.

(p) The orthogonal complement of the null space of A is R".
(q9) The orthogonal complement of the row space of A is {0}.
(r) Therange of T, is R".

(s) T, is one-to-one.

(f) A =0isnot an eigenvalue of A.
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Section 5.2 Diagonalization

DEFINITION 1 If A and B are square matrices, then we say that B is similar to A if
there is an invertible matrix P such that B = P~'AP.

DEFINITION 2 A square matrix A is said to be diagonalizable if it is similar to some
diagonal matrix; that is, if there exists an invertible matrix P such that P~'AP is
diagonal. In this case the matrix P is said to diagonalize A.

Similarity Invariants

Table 1 Similarity Invariants
Property Description
Determinant A and P~'AP have the same determinant.
Invertibility A is invertible if and only if P~'AP is invertible.
Rank A and P'AP have the same rank.
Nullity A and P~'AP have the same nullity.
Trace A and P~'AP have the same trace.

Characteristic polynomial | A and P~'AP have the same characteristic polynomial.

Eigenvalues A and P~'AP have the same eigenvalues.

Eigenspace dimension If 2 is an eigenvalue of A and hence of P~'AP, then the eigenspace

of A corresponding to A and the eigenspace of P~'AP
corresponding to A have the same dimension.

Diagonalizing a Matrix

Procedure for Diagonalizing a Matrix

Step 1. Confirm that the matrix is actually diagonalizable by finding n linearly inde-
pendent eigenvectors. One way to do this is by finding a basis for each eigenspace
and merging these basis vectors into a single set S. If this set has fewer than n
vectors, then the matrix is not diagonalizable.

Step 2. Form the matrix P =[p, p, --- p,] that has the vectors in § as its
column vectors.

Step 3. The matrix P~'AP will be diagonal and have the eigenvalues A, A3, ..., A,
corresponding to the eigenvectors p,., p,. ..., p, as its successive diagonal entries.
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Find a matrix P that diagonalizes

Solution In Example 7 of the preceding section we found the characteristic equation of »
A=13(A=21%=0
and we found the following bases for the eigenspaces:

-1 0 -2
A=2.p1=| 0| p2=|1| A=1lp3=
1 0

There are three basis vectors in total, so the matrix

-1 0 =2
P=1 01 1
10 1

diagonalizes 4. As a check, you should verify that
10 2|00 =2|=-10 2
Plap= 11 1|12 1| o1 1f=]|0
-1 0 -1fj21 0 3 10 0

Section 5.3 Complex Vector Spaces
Recall that if z = a + bi is a complex number, then:
* Re(z) = a and Im(z) = b are called the real part of z and the imaginary part of z,
respectively,
« |z] = Va? + b7 is called the modulus (or absolute value) of z,
* Z = a — bi is called the complex conjugate of z,
« Z=a*+b* =z
« the angle ¢ in Figure 5.3.1 is called an argument of z,
= Re(z) = |z|cos¢
* Im(z) = |z|sin¢g
* z = |z|(cos¢ + i sin @) is called the polar form of z.

Algebraic Properties of the Complex Conjugate

THEOREM 5.3.1 Ifu and v are vectors in C", and if k is a scalar, then:
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THEOREM 5.3.2 If A is anm x k complex matrix and B is a k x n complex matrix,
then:

(a) =4

®) (A7) =AD"

(c) AB=AB

>l

Dot Product and Norm

DEFINITION 2 Ifu = (u,,u>,..., u,) and v= (v, va, ..., v, ) are vectors in C”,

then the complex Euclidean inner product of u and v (also called the complex dot
product) is denoted by u - v and is defined as

U-V=u v +uv2~+---+u,v, 3)

We also define the Euclidean norm on C” to be

IVl = Vvov = VInlP + [02P + - - + o ? “4)
As in the real case, we call v a unit vector in C” if ||v| = 1, and we say two vectors u

and v are orthogonal ifu-v = 0.

Properties of the Dot Product

THEOREM 5.3.3 If u,v, and w are vectors in C", and if k is a scalar, then the
complex Euclidean inner product has the following properties:

(@) u-v=v-.u [Antisymmetry property]
b) u-(v+w)=u-v+u-w IDistributive property]

(¢) k(u-v)=(ku)-v |Homogenelty property]
(d) u-kv=%u-v) |Antihomogenelty property]

(¢) v-v=0andv-v=0ifandonlyifv=0. [Positivity property]

WEEK 10

Chapter 6 Inner Product Spaces

6.1 Inner Products

6.2 Angle and Orthogonality in Inner Product Spaces
6.4 Best Approximation; Least Squares
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6.1 Inner Products

DEFINITION 1 Aninner product on areal vector space V is a function that associates
a real number (u, v) with each pair of vectors in V in such a way that the following
axioms are satisfied for all vectors u, v, and w in V and all scalars k.

1 (u, v) = (v, u) [Symmetry axiom]

2. (u4+v,w) = (u,w) + (v,w) [Additivity axiom]

3 (ku, v) = k(u, v) [Homogeneity axiom]

4. (v,v) = 0and (v,v) = 0ifand only if v =0 [Positivity axiom]
A

real vector space with an inner product is called a real inner product space.

(u,v) = u-v =wu,vy +uv> + ---+u,v,

Algebraic Properties of Inner Products

THEOREM 6.1.2 Ifu, v, and w are vectors in a real inner product space V, and if k
is a scalar, then:

(@ (0,v)=(v,0)=0

) (u,v+w) = (u,v)+ (u,w)
(¢) (u,v—w)=(u,v)— (u,w)
d) (u—v,w)=(u,w)—(v,w)
(e) k{u,v) = (u,kv)

0: the angle between u and v

1 ( _(a, vy

Thaliivi

6 — cos

DEFINITION 1 Two vectors u and v in an inner product space are called orthogonal
if (u,v) = 0.

6.4 Best Approximation: Least Squares

Least Squares Problem Given a linear system Ax = b of m equations in n un-
knowns, find a vector x that minimizes ||b — Ax|| with respect to the Euclidean inner
product on R™. We call such an x a least squares solution of the system, we call
b — Ax the least squares error vector, and we call |b — Ax|| the least squares error.
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THEOREM 6.4.1 Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V, and if b is
a vector in V, then projy, b is the best approximation to b from W in the sense

that
[b — projy bl < [[b — w]|

for every vector w in W that is different from projy b.

Least squares solutions to Ax=b

THEOREM 6.4.2 For every linear system AX = b, the associated normal system

ATAx = ATp

Q)

is consistent, and all solutions of (5) are least squares solutions of Ax = b. Moreover,
if W is the column space of A, and X is any least squares solution of Ax = b, then

.7 27 7 of e 2y 7 -
ne ortnogonal projeciton oj 0 on vv Ly

projy b = Ax

EXAMPLE 1 Least Squares Solution =

(a) Find all least squares solutions of the linear system

X = ¥ = 4
3m b 2z = 1
—2x1 b dx3 = 3

(&) Find the error vector and the error.

Solution
(o) It will be convenient to express the system in the matnx form dx — b, where

1 =1 4
A=| 3 2| and b=|1
-2 4 3

It follows that

s0 the normal system 47 gy . 47} 8

13 al5)=]

Solving this system yields a unique least squares solution, namely,
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(b) The error vector is

_2] [
17 285 285
4 1 =1 e 4
b—ax=|1]=| 3 2| .#°|=]1]-]| 23 |=]-12%
3| |-2 4f 2] |2 rid i
¥ 285 a5 4
7 3
and the error is
JIb — Ax|| == 4556

WEEK 11

Chapter 7

7.1 Orthogonal Matrices

7.2 Orthogonal Diagonalization
7.3 Quadratic Forms

7.5 Hermitian, Unitary Matrices

7.1 Orthogonal Matrices

DEFINITION 1 A square matrix A is said to be orthogonal if its transpose is the same
as its inverse, that is, if
ATl =AT

or, equivalently, if
AAT = ATA = (H

THEOREM 7.1.1 The following are equivalent for an n x n matrix A.

(a) A is orthogonal.

(b) The row vectors of A form an orthonormal set in R" with the Euclidean inner
product.

(¢) The column vectors of A form an orthonormal set in R" with the Euclidean inner
product.
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EXAMPLE 1 A3 x 3 Orthogonal Matrix <

The matrix

="

|

|
e LERE = RN (9Y]
o =il =des
~wr —aler =3l

is orthogonal since

AT4=

|
e LI LR | V)
L= i
(==t

[ = =1
—

=l =dee =dea

E [ T ] -

=M =dlom =)o

=M = =
|

=l =des =don

THEOREM 7.1.2

(a) The inverse of an orthogonal matrix is orthogonal.
(b) A product of orthogonal matrices is orthogonal.

(¢) [If A is orthogonal, then det(A) = 1 or det(A) = —1.

THEOREM 7.1.3 If A is an n X n matrix, then the following are equivalent.
(a) A is orthogonal.

(b) |AX]|| = |[x|| for all x in R™.

(¢c) Ax-Ay=Xx-.yforallxandyin R".

Orthonormal Basis

THEOREM 7.1.4 If' S is an orthonormal basis for an n-dimensional inner product
space V, and if

W)s = (ur,u2,...,u,) and (V)s = (V1,02,...,0,)
then:
@ lull = /i + 03+ +
(b) du,v) =/ — )2+ Uz — 122 + - + (Uy — V)2
() (u,v) =uwuvy +usvy +--- 4+ u,v,
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THEOREM 7.1.5 Let V be a finite-dimensional inner product space. If P is the
transition matrix from one orthonormal basis for V to another orthonormal basis for
V, then P is an orthogonal matrix.

Orthogonal Diagonalization

DEFINITION 1 If A and B are square matrices, then we say that A and B are orthog-
onally similar if there is an orthogonal matrix P such that PTAP = B.

If A is orthogonally similar to some diagonal matrix, say
PAP=D

then we say that A is erthogonally diagonalizable and that P orthogonally diagonal-
izes A.

THEOREM 7.2.1 If A is an n X n matrix, then the following are equivalent.
(a) A is orthogonally diagonalizable.
(b) A has an orthonormal set of n eigenvectors.

(¢) A is symmetric.

Symmetric Matrices
THEOREM 7.2.2 If A is a symmetric matrix, then:
(a) The eigenvalues of A are all real numbers.

(b) Eigenvectors from different eigenspaces are orthogonal.

Orthogonally Diagonalizing an » x » Symmetric Matrix
Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram—Schmidt process to each of these bases to obtain an or-
thonormal basis for each eigenspace.

Step 3. Form the matrix P whose columns are the vectors constructed in Step 2.
This matrix will orthogonally diagonalize A, and the eigenvalues on the diagonal
of D = PTAP will be in the same order as their corresponding eigenvectors in P.
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7.3 Quadratic Forms

@) az|| &)

T
a3 ag||xy | 7% &

[x1 x2]

@) @4 as||x
[x1 x2 x3]|as a2 ag||x2|=x"4Ax
as ag a3z || x3

MR i Y

12 =1}|[x1
xli +?z%—31§ bdxypzy—2xx3 + Bxgxy=[x1 x2 x3]| 2 T 4| *2
-1 4 -3||*3

Definite quadratic forms

DEFINITION 1 A quadratic form x”Ax is said to be
positive definite if xTAx = 0O for x #% 0
negative definite if xTAx < 0 for x #% 0
indefinite if xTAx has both positive and negative values

THEOREM 7.3.2 [If A is a symmetric matrix, then:
(a) xTAX is positive definite if and only if all eigenvalues of A are positive.
(b) xTAx is negative definite if and only if all eigenvalues of A are negative.

(¢) xTAX is indefinite if and only if A has at least one positive eigenvalue and at
least one negative eigenvalue.
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Section 7.5 Hermitian, Unitary and Normal Matrices

DEFINITION 1 If A is a complex matrix, then the conjugate transpose of A, denoted
by A*, is defined by

A* = AT 1)

THEOREM 7.5.1 Ifk is a complex scalar, and if A, B, and C are complex matrices
whose sizes are such that the stated operations can be performed, then:

(@ (AH*=A

(B) (A+B)*=A*LpB*

(¢) (A—B)*=A*—-B*

d) (kA)* =kA*

(e) (AB)* = B*A*

EXAMPLE 1 Conjugate Transpose

Find the conjugate transpose 4" of the matrix

A= 14+: = 0
2 3-2i i

Solution We have

= [1-¢ 2 0 L
A=[ 5 340 —i:| andhence 4 =4 =| i 3+.21

Hermitian Matrices

DEFINITION 2 A square complex matrix A is said to be unitary if
A7l = A 3)

and is said to be Hermitian if

A*=A “@)

THEOREM 7.5.2 The eigenvalues of a Hermitian matrix are real numbers.
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THEOREM 7.5.3 If A is a Hermitian matrix, then eigenvectors from different eigen-
spaces are orthogonal.

EXAMPLE 2 Recognizing Hermitian Matrices

Hermitian matrices are easy to recognize because their diagonal entries are real (why?), and the
entries that are symmetrically positioned across the main diagonal are complex conjugates. Thus,
for example, we can tell by inspection that
1 i 143
A=| = =5 2-i
1—i 2431 3

Unitary Matrices

THEOREM 7.5.4 If Aisann x n matrix with complex entries, then the following are
equivalent.

(a) A is unitary.

(b) |Ax]|| = |Ix|| for all x in C".

(¢) Ax-Ay=x-yforallxandyinC".

(d) The column vectors of A form an orthonormal set in C" with respect to the
complex Euclidean inner product.

(e) The row vectors of A form an orthonormal set in C" with respect to the complex
Euclidean inner product.

DEFINITION 3 A square complex matrix is said to be wunirarily diagonalizable if
there is a unitary matrix P such that P*AP = D is a complex diagonal matrix. Any
such matrix P is said to wnitarily diagonalize A.

WEEK 12

Chapter 8 Linear Transformations

8.1 General Linear Transformations

8.2 Isomorphisms

8.3 Compositions and Inverse Transformations
8.4 Matrices for General Linear Transformations
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General Linear Transformations

DEFINITION 1 If7T:V — W isa function from a vector space V to a vector space W,
then 7 is called a linear transformation from V to W if the following two properties
hold for all vectors u and v in V and for all scalars k:

(i) T(ku) = kT(u) |Homogenelty property|

(i) T(u+v)=T(u)+ 7T(v) [Additivity property]
In the special case where V = W, the linear transformation 7 is called a linear
operator on the vector space V.

THEOREM 8.1.1 IfT:V — W is a linear transformation, then:
(@) T(0)=0.
(b) T(u—v)=T()—T(v) foralluandvinV.

Image, Kernel and Range

THEOREM8.1.2 Let T :V — W bea linear transformation, where V is finite dimen-
sional. If S = {v,, Va, ..., V,} is a basis for V, then the image of any vector v in V
can be expressed as

T(W) =cT(1) +T(V2) +---+ cpT(Vn) 3)

where ¢y, Ca2, . . ., ¢, are the coefficients required to express v as a linear combination
of the vectors in S.

DEFINITION 2 If T: V — W is a linear transformation, then the set of vectors in V
that 7 maps into 0 is called the kernel of T and is denoted by ker(7"). The set of all
vectors in W that are images under 7" of at least one vector in V is called the range
of 7" and is denoted by R(T).

THEOREM 8.1.3 IfT:V — W is a linear transformation, then:
(a) The kernel of T is a subspace of V.
(b) The range of T is a subspace of W.
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Rank, Nullity and Dimension

DEFINITION 3 Let 7: V — W be a linear transformation. If the range of 7 is finite-
dimensional, then its dimension is called the rank of T: and if the kernel of 7 is
finite-dimensional, then its dimension is called the nullity of T. The rank of 7 is
denoted by rank(7’) and the nullity of 7" by nullity(7").

THEOREM 8.1.4 Dimension Theorem for Linear Transformations

If T:V — W is a linear transformation from an n-dimensional vector space V to a
vector space W, then
rank(7') + nullity(T') = n 7

Isomorphism

DEFINITION 1 If T: V — W is a linear transformation from a vector space V to a
vector space W, then 7 is said to be one-to-one if T maps distinct vectors in V into
distinct vectors in W.

DEFINITION 2 If T: V — W is a linear transformation from a vector space V to a
vector space W, then T is said to be onto (or onto W) if every vector in W is the
image of at least one vector in V.

Range Range
—>o — >0 ofT 7T of T
One-to-one. Distinct Not one-to-one. There Onto W. Every vector in Not onto W. Not every
vectors in V have exist distinct vectors in W is the image of some vector in W is the image
distinct images in W. V with the same image. vector in V. of some vector in V.

THEOREM 8.2.1 If T:V — W is a linear transformation, then the following state-
ments are equivalent.

(a) T is one-to-one.
(b) ker(T) = {0}.
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THEOREM 8.2.2 If' V is a finite-dimensional vector space, and if T:V —V is a
linear operator, then the following statements are equivalent.

(@) T is one-to-one.
(b) ker(T) = {0}.
(¢) Tisontolie, R(T)=V].

DEFINITION 3 If a linear transformation 7: V — W is both one-to-one and onto,
then 7 is said to be an isomorphism, and the vector spaces V and W are said to be

isomorphic.

Compositions and Inverse Transformations

DEFINITION 1 If T1: U =V and T>: V — W are linear transformations, then the
composition of T with Ty, denoted by 73 o T (which is read 7> circle 777), is the
function defined by the formula

(T2 o Th)(u) = T2(Thi(u)) (1)
where u is a vector in U.
T;°T,
T, \./’" T,
u Ty(u) T(Ty(w)
U v w

Inverses

T=(T(v) =T (W) =v T

T(T'w)=Tv)=w

THEOREM 8.3.2 If T):U — V and T,: V — W are one-to-one linear transforma-
tions, then

(@) Tz o T is one-to-one.

®) (Tzoh)'=T'oT;".
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EXAMPLE 4 An Inverse Transformation <

Let 7- %3 . R be the linear operator defined by the formula
Tl:xl, x7, Ig) = {311 +x3, — le —4x2 -+ 3.7(3, 5X1 == 4)(2 = 2.T3)

Determine whether T'is one-to-one; if so, find 7! (x 1, X2, X3 )

Solution Tt follows from Formula 12 of Section 4.9 that the standard matrix for T'is

31 0
T|=|-2 -4 3
5 4 —2

(verify). This matrix is invertible, and from Formula 7 of Section 4.10 the standard matrix for
T lis

4 =2 =3
Tl = 1=|-11 & 9
—12 7 10

Expressing this result in horizontal notation yields

7 (xl,xg,xg)z (4;;1 — 2% = 3x3, — 11xq + 6x3 + 9x3, — 1257 + Txg + 10_?:3)

A Procedure for Finding Standard Matrices

There is a way of finding the standard matrix for a matrix transformation from R" to K™ by considering the effect of
that transformation on the standard basis vectors for R”. To explain the idea, suppose that 4 is unknown and that

ey, 3,.., ey,
are the standard basis vectors for R”. Suppose also that the images of these vectors under the transformation 7 4are
T(e1) = Aey, Ty(ez) =Aey,..., Tye,) =Aey
It follows from Theorem 1.3.1 that Aej is a linear combination of the columns of 4 in which the successive coefficients

are the entries of €. But all entries of j are zero except the jth, so the product Aej is just the jth column of the matrix
A. Thus,

A= [Tale1)|Tale2)| - - [Talen)] (12)

In summary, we have the following procedure for finding the standard matrix for a matrix transformation:

Finding the Standard Matrix for a Matrix Transformation

Step 1. Find the images of the standard basis vectors ey, e3, ..., e, for R” in column form.

Step 2. Construct the matrix that has the images obtained in Step 1 as its successive columns. This matrix is the
standard matrix for the transformation.
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Matrices for General Linear Transformations

EXAMPLE 1 Matrix for a Linear Transformation <

Let T-P) — P5 be the linear transformation defined by
T(p(x)) =xp(x)
Find the matrix for T with respect to the standard bases
B= {u1. ug} and B'= {vl. vg.n}

where

y=1 wy=zx, wy=1 wvy=x, 1-r3:.v:3

Solution From the given formula for T we obtain

Tlug) = T(1) = (x)(1) =x
T(ug) = T(x) = (x)(x) =x"

By inspection, the coordinate vectors for 7(u; ) and T(u3) relative to 3" are

0 K
[Ta)]lpg=|1| [T(aa)lg'=|0
0 1
Thus, the matrix for T with respect to B and B is
00
[T g=[[T(u)]g[T)]g]l=|1 0
01
WEEK 13
Chapter 9 Numerical Methods
9.1 LU-Decompositions
9.2 The Power Method
9.5 Singular Value Decomposition
Section 9.1 LU-Decompositions
’ The Method of LU-Decomposition
Step 1. Rewrite the system Ax = b as
LUx=b 2)

Step 2. Define a new n x 1 matrix y by

Ux=y 3)
Step 3. Use (3) to rewrite (2) as Ly = b and solve this system for y.
Step 4. Substitute y in (3) and solve for x.

Solve Ax=b
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Finding LU-Decompositions

DEFINITION 1 A factorization of a square matrix A as A = LU, where L is lower tri-
angularand U isupper triangular is called an L U-decomposition (or LU-factorization)

of A.

THEOREM 9.1.1 If A is a square matrix that can be reduced to a row echelon form
U by Gaussian elimination without row interchanges, then A can be factored as
A = LU, where L is a lower triangular matrix.

Constructing an LU-Decomposition

Procedure for Constructing an LU-Decomposition
Step 1. Reduce A to a row echelon form U by Gaussian elimination without row

interchanges, keeping track of the multipliers used to introduce the leading 1’s and
the multipliers used to introduce the zeros below the leading 1’s.

Step 2. In each position along the main diagonal of L, place the reciprocal of the
multiplier that introduced the leading 1 in that position in U.

Step 3. In each position below the main diagonal of L, place the negative of the
multiplier used to introduce the zero in that position in U.

Step 4. Form the decomposition A = LU.

EXAMPLE 2 An LU-Decomposition <

Find an LU-decomposition of

2 6 2
A=| =3 =8 0
4 & 2
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is an LU-decomposition of 4.
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LU decomposition

The main idea of the LU decomposition is to record the steps used in Gaussian elimination on A in the
places where the zero is produced. Consider the matrix

1 -2 3
A= 2 -5 12 |.
0 2 =10

The first step of Gaussian elimination is to subtract 2 times the first row from the second row. In order to
record what we have done, we will put the multiplier, 2, into the place it was used to make a zero, i.e. the
second row, first column. In order to make it clear that it is a record of the step and not an element of A,
we will put it in parentheses. This leads to

1 -2 3
((z) -1 6 )
0 2 -10

There is already a zero in the lower left corner, so we don’t need to eliminate anything there. We record this
fact with a (0). To eliminate the third row, second column, we need to subtract —2 times the second row
from the third row. Recording the —2 in the spot it was used we have

1 -2 3
((2) -1 6).
0 (-2) 2

Let U be the upper triangular matrix produced, and let L be the lower triangular matrix with the records
and ones on the diagonal, i.e.

1 0 0 1 -2 3
L=|12 10 and U=| 0 -1 6 |,
0 -2 1 0 0 2

then we have the following wonderful property:

1 0 0 1 -2 3 1 -2 3
LU=|2 1 0 0 -1 6 =12 -5 12 =A.
0 -2 1 0 0 2 0 2 -10

Thus we see that A is actually the product of L and U. Here L is lower triangular and U is upper triangular.
When a matrix can be written as a product of simpler matrices, we call that a decomposition of A and this
one we call the LU decomposition.

Section 9.2 The Power Method

DEFINITION 1 If the distinct eigenvalues of a matrix A are Ay, A, ..., Ak, and if

|%1] is larger than |A5], ..., ||, then A, is called a dominant eigenvalue of A. Any
eigenvector corresponding to a dominant eigenvalue is called a dominant eigenvector
of A.
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THEOREM 9.2.1 Let A be a symmetric n x n matrix with a positive dominant
eigenvalue ). If X is a unit vector in R" that is not orthogonal to the eigenspace
corresponding to i, then the normalized power sequence

AX AX; AXy

0, X]=—, Xp=—,... W = e——— o0 (1)
’ | Axoll” lAx """ lAX;_1]|°
converges to a unit dominant eigenvector, and the sequence
AX| - X;, AXp+X2, AX3-X3,..., AXg-eXg,... 2)

converges to the dominant eigenvalue .

The Power Method with Euclidean Scaling

The Power Method with Euclidean Scaling

Step 1. Choose an arbitrary nonzero vector and normalize it, if need be, to obtain a
unit vector Xg.

Step 2. Compute Ax( and normalize it to obtain the first approximation x; to a
dominant unit eigenvector. Compute Ax, - X; to obtain the first approximation to
the dominant eigenvalue.

Step 3. Compute Ax; and normalize it to obtain the second approximation x, to a
dominant unit eigenvector. Compute Ax; - X, to obtain the second approximation
to the dominant eigenvalue.

Step 4. Compute Ax; and normalize it to obtain the third approximation x3 to a
dominant unit eigenvector. Compute Axj - X3 to obtain the third approximation to
the dominant eigenvalue.

Continuing in this way will usually generate a sequence of better and better approxi-
mations to the dominant eigenvalue and a corresponding unit eigenvector.

Positive Dominant Eigenvalue, A

THEOREM 9.2.2 Let A be a symmetric n x n matrix with a positive dominant
eigenvalue ). If X is a nonzero vector in R" that is not orthogonal to the eigenspace
corresponding to A, then the sequence
AXo AX) AXp_

X = ——kL (@8

Xo, X1 = ——7 > X2= s = ) -
max(Axp) max(Axy) max(Axg_1)
converges to an eigenvector corresponding to A, and the sequence

AXj - X AX) + Xp AX3 - X3 AXy o+ Xg

)

k) b Lp e L b
X1 X X2 » X2 X3 X3 X * Xk

converges to A.
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The Power Method

The Power Method with Maximum Entry Scaling
Step 1.

Step 2. Compute Axy and multiply it by the factor 1/max(Axp) to obtain the first
approximation X, to a dominant eigenvector. Compute the Rayleigh quotient of x
to obtain the first approximation to the dominant eigenvalue.

Choose an arbitrary nonzero vector Xg.

Step 3. Compute Ax; and scale it by the factor 1/max(Ax;) to obtain the second
approximation x; to a dominant eigenvector. Compute the Rayleigh quotient of x,
to obtain the second approximation to the dominant eigenvalue.

Step 4. Compute Ax, and scale it by the factor 1/max(Ax,) to obtain the third
approximation x3 to a dominant eigenvector. Compute the Rayleigh quotient of x3

hhtnin tha damina icanualn
v 13

£ third annr, At to tha "t a1
v ll\' Lllll\.l Q}I}IIUAIIII(—ILIUII w lll\a \JUllllll(—llll \'Ib\-ll\‘alu\'

[}
[}

Continuing in this way will generate a sequence of better and better approximations
to the dominant eigenvalue and a corresponding eigenvector.

EXAMPLE 2 The Power Method with Euclidean Scaling

Apply the power method with Euclidean scaling to

o - el

Stop at X5 and compare the resulting approximations to the exact values of the dominant eigenvalue and
eigenvector.

Solution We will leave it for you to show that the eipenvalues of 4 are \ — 1 and \ = 5 and that the
eigenspace corresponding to the dominant eigenvalue | = 5 is the line represented by the parametric
equations xq = £, ¥y = £, which we can write in vector form as

]
,] )

Settingf =1/ ﬁ yields the normalized dominant eigenvector
1

'|r2- __ | 0707106781187 .
T 0707106781187, ..
7z

Now let us see what happens when we use the power method, starting with the unit vector X,

X=i

v =

(M

axg=|2 2|[1]=[3 xy = X0 L3 1 3] _[0.83205
2 3[|o] |2 l4xoll 13 |2] " 360555 [2| " |0.55470
A = | 3 2] [083205] [360555 =t 1 [360555] [073480
|2 3[]| 055470 |7 | 3.32820 | l4x,] ~ 490682 | 332820 |~ | 0.67828 |
Ay |3 2][073480] _[3.56097 .. - S 3.56097] _[0.71274
2 3] [067828 | | 3.50445 | |4xzll — 499616 | 350445 | [0.70143
Ao |3 2] [0-71274] _[3.54108] _ Ay 1 [354108]  [0.70824]
712 3] | 070143 | T [ 352976 | 4 Tl T 499985 | 352076 | 070597 |
Axan |3 2][0-70824] _ [3.53666] womAxa_ 1 [353666] [070733]
4712 3][070597 ™| 353440 37 x4l = 499999 | 353440 |~ | 070688
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(M ) Te o [0.83205 ]

\ (‘m) x1 = (Ax)) " xp = [3 60555 3.32320]-0_55410-34.84615

@ . . [0.73480 |

A (Axg) x3 = (Ax3) " x3 2 [3 56097 350445]}.6?828_34'993“

AD = (x| x3 = (Ax) T = (354108 3.52976)| V71474 | 4 90974

| 0.70143 |

@ _ o T. [0.70824]

A —(qu] x4 = (Axg) x4 [3.53666 3.534401_0?059?.~4_99999

\O_ o Tyon [0.70733] _
(Ax;] x5 = (Axs) x5 [3.53576 3.53531]_0_?0683. 5.00000

Thus, \™ approximates the dominant eigenvalue to five decimal place accuracy and X3 approximates the

dominant eigenvector in 7 correctly to three decimal place accuracy.

Section 9.5 Singular Value Decomposition

THEOREM 9.5.1 If A is an m x n matrix, then:

(a) A and ATA have the same null space.
(b) A and ATA have the same row space.

(¢) AT and ATA have the same column space.

(d) A and ATA have the same rank.

THEOREM 9.5.2 If A is an m x n matrix, then:
(a) ATA is orthogonally diagonalizable.

(b) The eigenvalues of ATA are nonnegative.

Singular Value Decomposition

ATA, then the numbers

are called the singular values of A.

DEFINITION 1 If A isanm x n matrix, and if A, A5, ..

alz\/l_, 02=\/A-—2,---, anz\/l'_n

., A, are the eigenvalues of
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EXAMPLE 1 Singular Values <

Find the singular values of the matrix

— T
[= QS

Solution The first step is to find the eigenvalues of the matrix

11
T o1l 2 1
AA[ ]0] []
1101{] 1 2

The characteristic polynomial of 4 Tqis
A —ary3= (1—3]{,x—1)

so the eigenvalues of 47 4 are Ay = 3 and A3 = 1 and the singular values of A in order of decreasing

rq-ﬁ-ﬁ, ng—m—l

size are
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